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Abstract

Concern is beginning to grow in the high-performance computing (HPC) community re-
garding the reliability of future large-scale systems. Disk-based coordinated checkpoint/restart
has been the dominant fault tolerance mechanism in HPC systems for the last 30 years.
Checkpoint performance is so fundamental to scalability that nearly all capability appli-
cations have custom checkpoint strategies to minimize state and reduce checkpoint time.
One well-known optimization to traditional checkpoint/restart is incremental checkpoint-
ing, which has a number of known limitations. To address these limitations, we describe
libhashckpt; a hybrid incremental checkpointing solution that uses both page protection
and hashing on GPUs to determine changes in application data with very low overhead. Us-
ing real capability workloads and a model outlining the viability and application efficiency
increase of this technique, we show that hash-based incremental checkpointing can have
significantly lower overheads and increased efficiency than traditional coordinated check-
pointing approaches at the scales expected for future extreme-class systems.

Keywords: Fault-tolerance, Checkpointing, Incremental checkpointing, Graphics
processing units

1. Introduction

Disk-based coordinated checkpoint/restart has been the dominant fault tolerance mecha-
nism in high performance computing (HPC) systems for at least the last 30 years. In current
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large distributed-memory HPC systems, this approach generally works as follows: periodi-
cally, all nodes quiesce activity, write all application and system state to stable storage, and
then continue with computation. In the event of a failure, the stored checkpoints are read
from stable storage to return the application to a previous known-good state.

Checkpoint performance impacts scalability of large-scale applications to such a degree
that many capability applications have their own optimized application-specific checkpoint
mechanism to minimize the saved checkpoint state and therefore the time to write the
checkpoint to stable storage (this time is also referred to as the checkpoint commit time).
While this approach minimizes the application state that must be written to disk, it requires
intimate knowledge of the application’s computation and data structures, and is typically
difficult to generalize to other applications.

One well-known and generalized optimization of traditional checkpoint/restart is incre-
mental checkpointing. Incremental checkpointing [1, 2, 3] attempts to reduce the size of a
checkpoint, and therefore the checkpoint commit time, by saving only differences (or deltas)
in state from the last checkpoint. The underlying assumption being that the mechanism
used to determine the differences in state has significantly lower overhead than the time to
save the additional data to stable storage.

Current incremental methods have failed to achieve dramatic decreases in checkpoint
size because of a reliance on page protection mechanisms to determine which address ranges
have been written, or dirtied, during the checkpoint interval [2]. Relying solely on page-based
mechanisms forces such an approach to work at a granularity of the operating systems page
size. Therefore, even if only one byte in a page is written, the entire page is marked as dirty
and must be saved. Furthermore, if identical values are written to a location, that page is
still marked as dirty. These problems are compounded by the increasing maximum page
sizes of modern processors and the increased performance for HPC applications on these
larger page sizes.

To address these limitations, we describe a hybrid incremental checkpointing approach
that uses page protection mechanisms, a hashing mechanism that can be optionally be of-
floaded to GPUs if available and idle. GPUs reduce the overhead and power consumption
of the hash calculation. Using real HPC workloads, this work compares the performance of
this technique against a page protection-based incremental systems and a highly optimized,
application-specific checkpoint technique. Our results show that our approach is able to dra-
matically reduce system checkpoint sizes compared to previous incremental checkpointing
systems; in some cases approaching the checkpoint sizes of hand-tuned application-specific
checkpointing systems. Our results also show that this technique can significantly improve
application efficiency, with the key performance factor being the amount of memory com-
pression from the technique (i.e. the size of the checkpoint file), rather than the speed of
the incremental approach.

This paper is organized as follow. First in Section 2, we define a model to illustrate
when this hash-based approach will pay off both in comparison to a page-based incremental
checkpointing approach as well as a more traditional, disk-based checkpointing approach.
In Section 3, we describe the design and implementation of libhashckpt, a previously
published [4] incremental checkpointing library. We show the resulting checkpoint state

2



compression from this technique using a number of real-world HPC capability workloads in
Section 4. In addition, we compare the compression results against an optimal application-
based checkpointing mechanism. In Section 5, using a number of hash algorithms, we
show the costs of performing this hashing on a CPU versus the speedup seen using a GPU.
Section 6 uses the aforementioned model and measured results to present the viability of this
technique using a GPU and CPU for possible systems in the exascale design space thereby
defining under which situations we would use this approach. In Section 7 we outline the
increase in application efficiency in those scenarios where the approach is viable. Related
checkpoint optimization work is discussed in Section 8. We conclude with a discussion of
the implications of this work as well as ongoing research in Section 9.

2. A Model for the Viability of Hash-Based Incremental Checkpointing

To evaluate the viability of this method we compare the performance of this hash-based
mechanism first against that of a strictly page-based approach. This hash-based approach
outperforms a page-based approach when the reduction in the checkpoint size for the hash
method outweighs the cost of computing the hashes of the modified pages. More specifically,
this approach is viable when the sum of the time to hash modified memory (Thash), plus
the time to write the application blocks that have been determined changed (Twrite hash), is
less than the time to write the memory that hash been determined changed using a strictly
page-based approach (Twrite whole). This model was first introduced by Plank et al in [5].
For clarity we provide it here. In more detail we have:

Thash + Twrite hash < Twrite whole (1)(
|c|
βhash

)
+

(
(1− α)× |c|

βckpt

)
<
|c|
βckpt

(2)

Where:

|c| is the size of page-based checkpoint

α is the percent reduction of hash-based approach in comparison to the page-based method

βhash is the per-process hash rate

βckpt is the per-process checkpoint commit rate

This equation can be reduced to:

βckpt
βhash

< α (3)

The maximum per-process checkpoint commit rate (βckpt) is generally known for many HPC
platforms. Therefore, we must measure the hashing rate (βhash), which is specific to both a
specific platform and hashing algorithm; and the compression percentage (α), which will be
specific to a particular application. In the next section, we use the libhashckpt library to
measure these quantities.

3



2.1. Viability Against Coordinated Checkpointing

In this section we outline the viability of this hash-based technique in comparison to
traditional checkpoint restart. Similar to above, this approach is viable when the sum of
the time to hash modified memory (Thash), plus the time to write the application blocks
that have been determined changed (Twrite hash), plus the time to mark dirty pages during
a checkpoint interval (Tdirty), is less than the time to write the memory that hash been
determined changed using a strictly page-based approach (Twrite whole). Again we have:

Thash + Twrite hash +Tdirty < Twrite whole (4)(
|c|
βhash

)
+

(
(1− α)× |c|

βckpt

)
+Tdirty <

|c|
βckpt

(5)

As we will show in later sections, for checkpoint intervals expected on future systems,
Tdirty is equal to 0. Therefore, this equation again reduces down to:

βckpt
βhash

< α (6)

The same as Equation 3. Therefore, the viability of this approach is the same in comparison
to both a page-based incremental approach and a traditional checkpoint/restart mechanism.

3. Libhashckpt: Hash-based Incremental Checkpointing

3.1. Overview

This work uses a previously published incremental checkpoint library called libhashckpt

[4]. The hash-based incremental checkpointing mechanisms in libhashckpt works as fol-
lows. While the application is running, the library uses the page-protection mechanism (i.e.
mprotect()) to mark those virtual memory pages that have been written in the checkpoint
interval as potentially dirty. To support MPI applications, the library must also intercept
all receive calls, including those implicit to collective operations which use buffers internal to
the MPI library. libhashckpt marks all receive message buffers as dirty, identifying them as
candidates to be checked by the hashing mechanism. These message buffers require marking
as changes in memory from high-performance, user-level network hardware, such as those
found on leadership-class HPC systems, are not subject to the processor’s page protection
mechanisms. Therefore, receive operations which write into these buffers will not be marked
by the page based mechanisms

When a checkpoint is requested, the library hashes all blocks corresponding to potentially
dirty pages, comparing the key with previously stored key values for the block, if they exist.
If no key exists, or if the key has changed, the block is marked to be included in the
checkpoint and excluded otherwise. As many leadership-class, extreme-scale systems are
increasing constructed with on-node graphics processing units (GPUs) that a number of
DOE and DOD workloads can not effectively utilize, if the node contains an idle GPU,
potentially dirty blocks are optionally copied down to the GPU and the computed keys are
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copied up to host memory. For those workloads that can use these GPUs, hash calculations
can be done on the CPU similar to manner described in [6]. Finally, once the hash calculation
has completed, all blocks that have been marked as changed by the library are saved to stable
storage for later retrieval, if needed.

3.2. Implementation Details

To evaluate the merit of this hash-based approach, we created the libhashckpt hash-
based, hybrid incremental checkpointing library. libhashckpt is based on the libckpt

library [3], now referred to as clubs [7]. Clubs is a transparent, user-level, checkpoint library
for Unix based systems. It contains a number of checkpointing optimizations including:

• Virtual memory page-protection based incremental checkpointing;

• Forked checkpointing; and,

• User-directed checkpointing which allows the user to include or exclude portions of the
processes address space in the checkpoint.

We added the following functionality to this library. Firstly, we added a framework for
calculating and storing hash keys of arbitrary block size. The block size can be adjusted
to be larger or smaller than the native page size. We also modified the library to intercept
MPI receive calls, including those in MPI collective operation, using the MPI profiling layer
found in most modern MPI libraries. Also, we added an engine for offloading this hash
calculation to graphics processing units, if any are present.

3.3. Hash/Checksum Algorithms

In this section we briefly describe each of the checksum and hash algorithms used in
this work. These algorithms vary greatly in both their collision resistance and their com-
putational complexity, from the relatively simple XOR and CRC32 checksums to the complex,
collision resistant, and cryptographicaly secure MD5 and SHA256. In later sections we compare
the execution performance of these algorithms using CPUs and GPUs.

3.3.1. Rotating XOR

The rotating XOR function, shown in Listing 1, is a simple hash algorithm that repeatably
XOR input data and folds this input data with individual bytes of the running 32 bit output
value. This folding and mixing of the input data gives the rotating hash a much better
distribution than a standard XOR. The advantage of this method is its simple computation.
Though this folding step sufficiently mixes the input data, this algorithm generally is not
considered secure enough to be used for cryptographic applications.
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Listing 1: Rotating XOR Algorithm
1 #include <stdint.h>
2
3 uint32 t
4 rotating xor( void ∗addr, int len )
5 {
6 unsigned char ∗p = addr;
7 uint32 t h = 0;
8 int i ;
9

10 for( i = 0 ; i < len ; i++ )
11 h = ( h << 4 ) ˆ ( h >> 28 ) ˆ addr[ i ];
12
13 return h;
14 }

3.3.2. ADLER32

Invented by Mark Adler, ADLER32 is a cyclic redundancy checksum algorithm defined in
RFC1950 [8]. This checksum algorithm is part of the widely-used zlib compression library
as well as the rsync data transfer and synchronization utility.

The ADLER32 checksum is obtained by concatenating two 16-bit checksums A and B into
one 32 bit output. In this scheme, A is the sum of all bytes in the block and B is the sum
of the individual values of A from each step. The ADLER32 checksum is considerably faster
to compute on most platforms and slightly less collision resistant than a CRC32. ADLER32’s
collision issues occur for very small block sizes, as the sum of A does not have the opportunity
to wrap around. Similar to XOR, an ADLER32 checksum can be easily forged and therefore
generally not considered appropriate for application requiring strong collision resistance.

3.3.3. CRC32

A cyclic redundancy check (CRC32) [9] is 32 bit hashing algorithm commonly used for er-
ror detection and correction on many storage and network devices such as Ethernet. CRC32’s
have the advantage of being simple to implement and are well suited in detecting contiguous
error symbols. Typically, a CRC32 can detect a fraction (1 − 2−n) of all burst errors larger
than n bits in length.

A cyclic redundancy check algorithm requires a generator polynomial. This polynomial
is the divisor of an operation with the value to be hashed treated as the dividend. The
remainder of this polynomial division is the return value, or referred to as the CRC.

Similar to the other methods described thus far in this section, CRC32’s are not suitable
for cryptographic applications. Most notably, due to the linear nature of a CRC, a message
can easily be modified in such a way to leave the CRC output unchanged and therefore is
considered vulnerable to collisions.

3.3.4. MD5

The fifth Message-Digest Algorithm (MD5) [9] is a widely used cryptographic hash function
designed by Ron Rivest. Specified in RFC1321 [10], MD5 produces a 128-bit hash value and is
commonly used to check data integrity. Though designed to be collision resistant, a collision
attack currently exists for MD5. The fact this attack exists has no influence on its choice for
an appropriate hashing method, as while collisions can be computed, they rarely occur and
are difficult to generate.
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Algorithm Key Size (bits) Comparisons Until Collision Data Checkpointed (bytes)

XOR 32 8.2× 104 2.1× 107

ADLER32 32 8.2× 104 2.1× 107

CRC32 32 8.2× 104 2.1× 107

MD5 128 2.3× 1019 5.9× 1021

SHA256 256 4.2× 1038 1.1× 1041

Table 1: Average number of hash block comparisons and data checkpointed until a collision is expected to
occur assuming a worst case scenario of 256 byte block sizes. These number are in comparison to to the
silent data corruption rate on current leadership-class, machines containing hundreds of terabytes of chipkill
protected [20] DRAM memory. On these machines, undetected errors are predicted to occur a few times
per day [21]. For this worst case block size, hash key sizes greater or equal to 128 bits ensure a undetected
bit flip is more likely. For smaller key sizes, the likelihood of collision can be mitigated by increasing hash
block size.

3.3.5. SHA256

The second Secure Hash Algorithm (SHA256) [11] is one of a family of cryptographic
hash function which includes SHA224, SHA256, SHA384, SHA512, each of which varies by
the hash digest size (224, 256, 384, and 512 bits). This set of function was designed by the
National Security Agency in response to a flaw found in the SHA-1 secure hash.

The SHA-2 family of functions are included in a number of widely-used security applica-
tions and protocols, including TLS [12] and the Secure Sockets Layer, PGP [13], SSH [14],
S/MIME [15], and IPsec [16]. Like all well designed cryptographic hashes, they are highly
collision resistant.

3.4. The Hash Aliasing Problem

As with any hash-based approach in which the number of hash keys is smaller than the
number of original blocks, aliasing is a concern. Aliasing, also referred to as hash collision,
comes about when modifications to a block are just such that the key values for the two
blocks are identical. The danger being that the library will believe a block has not changed,
not save the modified data, thereby corrupting the application in the event of a restart.

To determine the expected (or average) number of collisions expected to occur, we can
use a well known from probability theory called the birthday problem [17, 18]. The birthday
problem asks how many people, on average, need to brought together until there are enough
to have a greater than 50% chance that two of these individuals share the same birth
month and day (assuming birthdays from the population are from the same distribution
and independently distributed). This well studied problem and its surprisingly low result
(around 25 people) has been used in many different fields including cryptography and hashing
[19].

We use the result of this problem to determine how many hash block comparisons which
need to be done until the expected number of collisions is equal to 1. Table 1 has the
expected number of key comparisons until a collision, assuming each hash block is equally
likely. For each hashing algorithm the important factor is the key size (analogous to number
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of days of year for original birthday problem). Also in this table we show the average amount
of checkpoint data assuming a worst case block size of 256 bytes. From this table we see the
expected result that the larger key sizes have a lower likelihood of aliasing. For key sizes
equal to or greater than 128 bits, an undetected errors is DRAM memory is more likely to
occur than a hash collision. On these leadership-class machines, which contain hundreds of
terabytes of chipkill protected memory [20], these undetected errors are predicted to occur a
few times a day [21]. For these smaller 32 bit key sizes, the likelihood collision is much greater
than silent data corruption. The chances of these collisions can be mitigated by increasing
the hash block size to larger than 256 bytes or ensuring that block modifications do not
cause a collision. Previous work, which looked at aliasing [22] showed that the application
most similar to many HPC workloads, a matrix multiplication workload, showed no aliasing
issues for the XOR and CRC16, using smaller hash key sizes than those studied here.

4. State Compression Measurement

In this section, we present the compression performance of this hash-based approach
using the libhashckpt library described in the previous section. First, we examine the
results of hashing versus page-based protection mechanisms for determining the percentage
of application memory that has actually changed. Then, we examine the state compression
performance of this library with the a number of simulation workloads, comparing this hash-
based approach with both standard page protection-based incremental checkpointing and
an application’s specific checkpoint mechanism.

4.1. Applications and Platform

To evaluate the compression achieved by hash-based checkpointing, we present results
from a number of key HPC applications; CTH [23], LAMMPS [24, 25], SAGE [26], and
HPCCG [27]. These application represent a range of computational techniques, are fre-
quently run at very large scales, and are key simulation workloads to both the US Depart-
ment of Defense and Department of Energy. These four applications represent different
communication characteristics and compute to communication ratios.

1. CTH [23] is a multi-material, large deformation, strong shock-wave, solid mechanics
code developed by Sandia National Laboratories with models for multi-phase, elas-
tic viscoplastic, porous, and explosive materials. CTH supports three-dimensional
rectangular meshes; two-dimensional rectangular, and cylindrical meshes; and one-
dimensional rectilinear, cylindrical, and spherical meshes, and uses second-order accu-
rate numerical methods to reduce dispersion and dissipation and to produce accurate,
efficient results. It is used for studying armor/anti-armor interactions, warhead design,
high explosive initiation physics, and weapons safety issues.

2. SAGE, SAIC’s Adaptive Grid Eulerian hydro-code, is a multi-dimensional, multi-
material, Eulerian hydrodynamics code with adaptive mesh refinement that uses second-
order accurate numerical techniques [26]. It represents a large class of production ap-
plications at Los Alamos National Laboratory. It is a large-scale parallel code written
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in Fortran 90 and uses MPI for inter-processor communications. It routinely runs on
thousands of processors for months at a time.

3. LAMMPS [24] is a classical molecular dynamics code developed at Sandia National
Laboratories. For our experiments we use the embedded atom method (EAM) metallic
solid input script which is used by the Sequoia benchmark suite. The LAMMPS code
and input scripts are provided on the LAMMPS web site [25]. For this experiment we
ran LAMMPS in weak-scaling mode.

4. The HPCCG mini-application, part of the Mantevo project [27], is a simple sparse
conjugate gradient solver designed to capture an important component of Sandia’s
production workload. The majority of its runtime is spent performing sparse matrix-
vector multiplies, where the sparse matrix is encoded in compressed row storage format.
The interprocessor communication is minimal, requiring exchange of nearest neighbor
boundary information, in addition to global MPI Allreduce() operations required for
the scalar computations in the conjugate gradient algorithm.

CTH, SAGE, LAMMPS each contain highly-optimized application-specific checkpoint
mechanisms that will be used for comparison with the methods outlined in this paper.
These application tests were conducted on 1024, dual-core nodes of the Cray Red Storm
system [28] at Sandia National Laboratories. For these application runs, the hashing was
performed by a spare on-node CPU core. A checkpoint time of 15 minutes was used for each
of these applications. This interval was chosen as, historically, checkpoint commit times on
the largest leadership-class machines has remained relatively constant at this level for the
past ten years [29]. Checkpoint intervals less than this 15 minutes ensure no progress will
be made with the application.

Not included in this section is performance overheads of this library on Red Storm. At
the 15 minute checkpoint interval used in this work, no statistically significant slowdown in
performance in comparison to traditional checkpointing was observed. This low overhead is
due to the fact that each written page is only marked as dirty once in a checkpoint interval.
All further accesses proceed without interference. In order to see any slowdown due to the
page access tracking, we needed to decrease the checkpoint interval to less than two minutes.
As described earlier, this interval is much smaller than could be used on a production HPC
system while still ensuring application progress.

4.2. Hash-based Dirty Data Detection

The key feature that libhashckpt exploits is finer-grained detection of dirtied blocks
than is currently possible using mechanisms based solely on page protection mechanisms.
To examine the overall potential of such a hash-based approach, we first used libhashckpt

to examine what portion of an application’s memory actually changed (using fine-grained
hashing) versus the percentage that a pure page protection-based mechanism would indicate
was changed. In this section we show the average percent of memory written using a page
protection-based mechanism. In addition we show the average, minimum, and maximum
percentage across all nodes of the written memory that is determined changed using a hash-
based approach.
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Figures 1 – Figure 4 show the percentage of memory that our hash-based mechanism
determined changed at each 15 minute checkpoint interval versus the percentage that a page
protection mechanism determined were dirtied. For each of these tests, we use a 512 byte
block size on an operating system with 4KB pages. Each machine page therefore, contains
8 hash blocks. A small scale sweep of hash block sizes over an order of magnitude smaller
and larger show this value to be optimal in terms of write granularity for all the application
tested.

In Figure 1, we see that while nearly all of CTH’s memory is written in a checkpoint
interval, a very small percentage of that memory actually changes. This small percentage of
change is an artifact of the simulation for CTH and many similar workloads. The application
uses thresholding such that, in a simulation-time interval, if sections of the simulation do
not change above a certain threshold deemed to be significant, the values remain the same.
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Figure 1: Percent of application memory change detected using a hash-based incremental checkpointing
mechanism for the CTH exploding pipe problem. The shaded region represents the average percent of
memory written to using a page-protection based mechanism.

In contrast to the CTH results, the amount of data changed for LAMMPS, shown in
Figure 2, is nearly identical to the data written. This large change in data is due to the fact
that the largest data structure in LAMMPS is the neighbor structure. This structure holds
distance information between all atoms and is used for calculating forces. As the simulation
progresses, this structure continuously changes as atoms move around.

In Figure 3, we see that the performance of SAGE sits somewhere between that of CTH
and LAMMPS. For some nodes in this SAGE problem, much of the node’s data changes
in the checkpoint interval. For other nodes, however, the amount of data on a node that
changes is much lower than the total amount a page-based mechanism determines changed.
The average amount of data changed across all nodes and for all checkpoints is around 55%.

Lastly, Figure 4 shows the results of HPCCG which are similar to LAMMPS, where most
of the data written is different than what was there previously. In contrast to LAMMPS, as
HPCCG converges an increasingly smaller percentage of the written memory changes.
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Figure 2: Percent of application memory change detected using a hash-based incremental checkpointing
mechanism for the LAMMPS EAM problem. The shaded region represents the average percent of memory
written to using a page-protection based mechanism.
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Figure 3: Percent of application memory change detected using a hash-based incremental checkpointing
mechanism for SAGE application. The shaded region represents the average percent of memory written to
using a page-protection based mechanism.

These results demonstrate the potential accuracy advantage a hash-based incremental
checkpointing approach can provide over a purely page protection-based mechanism. On the
other hand, these results also show that the potential benefits are also highly application-
dependent and in fact may even be dependent to a specific type of problem with a given
application.

4.3. Checkpoint File Size Comparison

Based on the results in the previous section, we can now examine the resulting differ-
ence in checkpoint sizes between the two incremental checkpointing approaches (pure page
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Figure 4: Percent of application memory change detected using a hash-based incremental checkpointing
mechanism for HPCCG. The shaded region represents the average percent of memory written to using a
page-protection based mechanism.

Application VM CKPT Hash CKPT App CKPT
(MB) (MB) (MB)

CTH 513 35 (93%) 26 (95%)
LAMMPS 2735 2670 (2.3%) 608 (78%)

Table 2: Per-process checkpoint size for CTH and LAMMPS. This table contains the size of the checkpoint
using standard page protection-based system-level incremental checkpointing (VM CKPT), libhashckpt’s
hybrid approach, and an application-specific checkpointing approach (App CKPT). For the latter two
columns the number in parenthesis is the percent reduction in size when compared to a system-based
incremental checkpoint. The VM CKPT and Hash CKPT checkpoints contains data from both the applica-
tion as well as other libraries linked with the application, for example MPI library data and its associated
buffers.

protection vs. libhashckpt’s hybrid page protection/hashing scheme) for both LAMMPS
and CTH. These two application are chosen due to there highly optimized application-based
mechanisms. We also compare the hash and page-based checkpoint sizes with those gener-
ated by the application-specific mechanisms. These application specific methods are highly
optimized, and, for the purpose of this work, we view these checkpoint sizes as a file size
optimum. The purpose of this comparison is to see how close to this optimal we can get
without having any application knowledge beyond what the library can gather from access
patterns and hash values.

Table 2 shows a comparison in per-process checkpoint sizes for our two applications.
We see that for CTH, libhashckpt’s hash-based method dramatically reduces the size of
system-based incremental checkpoints based solely on a page protection mechanism. Custom
application-specific checkpointing mechanism does better still, but our hybrid scheme results
in checkpoints that are only 35% larger than this highly-optimized approach. One reason
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our hash-based library is larger than the application-specific method has to do with the fact
that the application checkpoint contains only application data, while the other methods
shown save state from the application as well as the libraries linked with the application,
most notably the MPI library and its associated internal data and buffers.

In contrast to CTH, the hash- and page-based schemes are nearly identical in size
for LAMMPS, with application-specific checkpointing routines offering a 75% reduction in
checkpoint sizes. This is due to the fact that the application-specific checkpointing mech-
anism in LAMMPS can completely avoid writing neighbor structures described previously
in checkpoints as they can be reconstructed at application restart. LAMMPS only needs to
save Atom location and type information. System-based methods, such as ours, do not have
the application-specific knowledge required to do this.

5. Hashing Costs

In the previous section we used a spare on-node CPU to perform the hashing of modified
pages. This hashing can be very expensive on a host CPU. This high cost determines the
possible merits of this technique. As we specified in Equation 2, this technique is viable if
the hashing costs outweigh the decrease in state compression. Therefore, we are interested
in methods to speed up the hashing. The method used to lower the overheads in this work
is to offload the hash calculation to GPUs. Therefore, the reasons to use a GPU for this
calculation are the higher viability bandwidths (which mean viability in a larger portion of
the exascale design space), lower power consumption, or the fact that the CPU is currently
busy with other important work.

In this section we measure and compare the GPU vs CPU performance for a number of
hash signature algorithms. For the hashing results in this section, we compare the perfor-
mance of the Opteron processor on Red Storm [28] against that of a NVIDIA Tesla C1060
and a NVIDIA Tesla D2090 based on the “Fermi” architecture. For each of the tests we
did the following. We take one of the checkpoints for the CTH application run described
earlier in the chapter. In this checkpoint we send all the written pages to be hashed either
by the CPU for the GPU. For the CPU numbers we use the Libgcrypt [30] implementations
of XOR, ADLER32, CRC32, MD5, and SHA256 algorithms. All GPU numbers presented in the
following section represent the best measured for a block size varying the number of threads
and the size of the overlap of the concurrent copy down to the card and computation for
asynchronous CUDA [31] kernels. These GPU numbers include the time to copy data down
to the GPU as well as the time to copy computed keys to host memory.

Rotating XOR. Figure 5 compares GPU vs. CPU performance of an XOR calculation for vary-
ing block sizes. As stated previously, all GPU numbers presented in this plot represent the
best measured for a block size varying the number of threads and the size of the overlap of
the concurrent copy down to the card and computation. Also, these GPU numbers include
the time to copy data down to the GPU as well as the time to copy computed keys to host
memory. With a per-process hashing rate between 2800 and 1700 MB/sec for the Fermi
GPU card, the GPU-based data rates greatly exceed the per-process commit rate to stable
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Figure 5: A comparison of rotating XOR hashing rates for CPU and GPU. GPU rate includes both the
copying of data to be checksummed down to the cards local memory as well as the copying of the computed
keys from the card to host memory. The GPU data is the best recorded for a block size varying the number
of threads and the amount of overlap in copy and computation. The CPU test use the XOR algorithm
described previously

storage for many large-scale systems. Also, for larger block sizes, including sizes beyond
what is shown here, the CPU results exceed that of the GPU cards. For comparison, recent
I/O studies [32] place the per-process commit bandwidth to stable storage 1MB/sec.

CRC32. Figure 6 compares GPU vs. CPU performance of an CRC32 calculation for varying
block sizes. With a per-process hashing rate between 2200 and 700 MB/sec for the GPU
cards, the GPU-based data rates greatly exceed the per-process commit rate to stable stor-
age for many large scale systems. Also, even though the Fermi cards have twice as many
resources, for block sizes larger than 64 bytes the performance of the two are nearly the
same.

ADLER32. Figure 7 compares GPU vs. CPU performance of an ADLER32 calculation for
varying block sizes. With a per-process hashing rate between 3200 and 2000 MB/sec for
the Fermi GPU card, the GPU-based data rates greatly exceed the per-process commit rate
to stable storage for many large-scale systems. Also, for larger block sizes the CPU results
exceed that of the Tesla GPU card. For block sizes larger than those show in this figure,
the CPU performance exceeds even that of the Fermi card.

MD5. Figure 8 compares GPU vs. CPU performance of an MD5 calculation for varying block
sizes.With a per-process hashing rate between 600 and 4000 MB/sec for the Fermi GPU card,
the GPU-based data rates greatly exceed the per-process commit rate to stable storage for
many large-scale systems.
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Figure 6: A comparison of CRC32 hashing rates for CPU and GPU. GPU rate includes both the copying of
data to be checksummed down to the cards local memory as well as the copying of the computed keys from
the card to host memory. The GPU data is the best recorded for a block size varying the number of threads
and the amount of overlap in copy and computation. The CPU numbers are using the Libgcrypt [30] CRC32
hashing algorithm.

SHA256. Lastly, Figure 9 compares GPU vs CPU performance of an SHA256 calculation for
varying block sizes. With a per-process hashing rate between 1400 and 2200 MB/sec for the
Fermi GPU card, the GPU-based data rates exceed the per-process commit rate to stable
storage for many large-scale systems.

6. Viability of Hash-Based Incremental Checkpointing

In this section we outline the viability of this hash-based technique for next generation
extreme-scale systems. These viability bandwidths provide guidance for when we would
want to use this technique. For commit bandwidth greater than these viability bandwidths
we would chose traditional checkpoint/restart. For bandwidths less than these viability
bandwidths (which we will see to be the majority of the design space), we use this hash-
based technique.

Table 3 summarizes the compression results shown previously in this paper. For CTH,
SAGE, and LAMMPS we use Equation 3, the compression values measured in Section 4.2.
In addition we use the maximum hash computation rate (βhash) measured in Section 5.
These values are 4.0 GB/sec from an MD5 hash on a Fermi GPU and a value of 500 MB/sec
for the CPU hashing algorithm.

Table 3 shows the per-process break-even checkpoint commit bandwidths for the mea-
sured applications using the maximum hashing rate and compression percentages. If a
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Figure 7: A comparison of ADLER32 hashing rates for CPU and GPU. GPU rate includes both the copying
of data to be checksummed down to the cards local memory as well as the copying of the computed keys
from the card to host memory. The GPU data is the best recorded for a block size varying the number of
threads and the amount of overlap in copy and computation. The CPU numbers are using the Libgcrypt
[30] ADLER32 hashing algorithm.

Application α (%) GPU Break-even βckpt CPU Break-even βckpt
(MB/sec) (MB/sec)

CTH 83 3320 415
SAGE 35 1400 175

LAMMPS 2.4 92 12

Table 3: Per-process checkpoint commit “break-even” bandwidth CPU/GPU comparison calculated using
Equation 3 for the applications CTH, SAGE, and LAMMPS. Compression values for each of the applications
are from Section 4.2 and a βhash value equal to 4.0GB/sec from the GPU MD5 hash as illustrated in Section 5,
and a βhash value equal to 500MB/sec from the CPU ADLER32 hash.
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Figure 8: A comparison of MD5 hashing rates for CPU and GPU. Note, the GPU rate includes both the
copying of data to be checksummed down to the cards local memory as well as the copying of the computed
keys from the card to host memory. The GPU data is the best recorded for a block size varying the number
of threads and the amount of overlap in copy and computation. The CPU numbers are using the Libgcrypt
[30] MD5 hashing algorithm.

proposed exascale-class machine has a per-process checkpoint commit speed is less then
this break-even value, then the hash-based approach has a lower overhead than a strictly
page-based approach.

The per-process break-even CPU results in this table vary from 415 to 12 MB/sec, with
the greatest per-process bandwidth being for CTH which has the greatest compression and
lowest for LAMMPS. For the GPU, if a machine has a per-process checkpoint commit speed
is less then 3.32 GB/sec then the hash-based approach will have a lower overhead than the
strictly page-based approach. Even with many optimizations and high performance parallel
file systems that stripe large writes simultaneously across many disks and file servers, it is
difficult to achieve per-process disk commit bandwidth of this magnitude for many future
large-scale systems as these values for the GPU are larger than what we even see today.

For illustration, in Figure 10 we relate these results to a platforms aggregate checkpoint
break-even bandwidth for a range of socket counts and measured compression factors mea-
sured with the library. The shaded region in this figure corresponds to possible socket count
for an exascale class machine [33]. In this figure we use the optimal GPU and CPU hash
bandwidths measured in this work (4GB/sec and 500MB/sec respectively). This aggregate
breakeven bandwidth is derived using Equation 3 and set βckpt = βagg

N
, where βagg is the

aggregate bandwidth of the system and N is the number of sockets. Putting these two
equations together we get the following equation for the aggregate checkpoint break-even
bandwidth.
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Figure 9: A comparison of SHA256 hashing rates for CPU and GPU. Note, the GPU rate includes both the
copying of data to be checksummed down to the cards local memory as well as the copying of the computed
keys from the card to host memory. The GPU data is the best recorded for a block size varying the number
of threads and the amount of overlap in copy and computation. The CPU numbers are using the Libgcrypt
[30] SHA256 hashing algorithm.

βagg < n · α · βhash (7)

From the figure we see that a platforms aggregate checkpoint commit rate less than the
value this break-even values means the hash based approach outlined in the paper will use
less resources than that f a traditional coordinated checkpointing scheme.

From Figure 10(a), the GPU results show that a systems checkpoint commit rate must
exceed 1PB/sec (1015 bytes) for the majority of the design space for traditional checkpointing
to perform better than this hash-based approach. The CPU results in Figure 10(b) show
a slightly different story. Due to the significantly lower hashing rates of the CPU, the
breakeven bandwidth is an order of magnitude lower than the GPU results and well within
the reach in the case for LAMMPS is local non-volatile storage is used.

7. Impact on Application Efficiency

In the previous section we show where in the extreme-scale design space this hash-based
technique is a viable approach (i.e. what aggregate checkpoint bandwidth). This however is
not the whole story for this method. While the viability model tells you when this approach
should be used it does not, however, tell you the impact this method will have on application
runtime. To evaluate the impact on performance we will use the difference in applications
efficiency as our metric. This efficiency metric is defined as the time to solution in the failure
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Figure 10: Aggregate commit breakeven bandwidths using Equation 7 for a number of possible socket counts.
In the figure we use the optimal GPU hashing rate (4GB/sec) and optimal CPU rates (500MB/sec) and
the compression factors measured with the library. The shaded regions corresponds to the possible socket
counts range expected for an exascale class machine [33].

environment divided by the time to solution in a failure-free environment. This difference
in efficiency metric we use for the remainder of this section is defined as the efficiency with
this hash-based approach minus the efficiency of a traditional rollback/recovery to stable
storage.

To outline application efficiency, we created a performance model for expected time
to solution for an application using checkpoint/restart. This model is based on Daly’s
higher order model [34], which assumes node failures are independent and exponentially
distributed. The model takes as input the mean time between failures (MTBF) for the
system, the checkpoint commit time, the checkpoint restart time, the number of nodes used
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in the application and the time the application would take to complete in a failure-free
environment.

We modified this model to integrate this hash-based incremental checkpointing approach.
For the checkpoint commit time we included the time to hash the checkpoint image as well
as the time to write the changed blocks from that image to stable storage. Regarding
file I/O rates to stable storage, we use a report based on a study of I/O performance on
Argonne National Laboratory’s 557 TFlop Blue Gene/P system (Intrepid) [32] to select
I/O rates for our model. This work executes an I/O scaling study measuring maximum
achieved throughput for carefully selected read and write patterns. From this report, the
best observable per process I/O bandwidths 1 MB/s for both reading and writing. This
performance scales to about 32,768 processes and then decreases. For example, at 131,072
processes, per process read bandwidth is 385 KB/s and per process write bandwidth is 328
KB/s. At any rate, for our study, we optimistically choose the best observed per process
I/O bandwidth of 1 MB/s.

In Figure 11, we show the result of this model for the values measured previously in
this work for LAMMPS, SAGE, and CTH. Again in these figures we show the increase in
application efficiency. Therefore a efficiency difference of 40 means that, with this method,
the efficiency increases 40 percentage points (for example, from 20% to 60%). In each of
these figure we use the hash rates and percentage changed memory measured earlier in this
work. In addition, this model assumes a five year socket MTBF as has been measured in
current studies [35]. Finally, the shaded region in these figures corresponds to the possible
socket count range expected for an exascale class machine [33].

From these figures we note two things; one, the efficiency of this method is independent of
whether the hashing is done on the CPU or GPU, and, two, this efficiency is defendant only
on the amount of data that has changed, a property that varies greatly across applications.
Therefore, the decision whether to perform hashing on CPU or GPU may be based on a
power consumption argument or based on which component is free to perform the operation,
rather than a performance-based argument. The fact that the ash speed has no impact on
efficiency is due to the fact that at these scales, performance is dominated by the commit
and recovery times and not the hash times. Therefore, for applications like LAMMPS,
where much of the memory written to changes in an interval, this method has little to
no performance impact. CTH, on the other shows a dramatic and positive influence on
performance.

7.1. Impact of Changed Memory

In the previous section we showed that the hash speed is not critical to application per-
formance. We showed that what is key to performance is the amount of changed memory.
Therefore, to conclude this section, we model the performance impact of this changed mem-
ory on application performance. Similar to the previous section, we use the same efficiency
difference defined in the previous section. Additionally, we use the same application model
described previously.

In Figure 12, we show the result of this model varying the amount of changed memory.
The X-axis in this figure is the amount of memory unchanged in the checkpoint interval.
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Therefore, 0% of memory unchanged means that all memory has changed. For this model,
we again assume a 5 year socket MTBF, the hashing viability bandwidth measured with
CTH (although this speed does not matter), and a socket count of 100,000 – a number we
expect to see of future extreme-scale systems.

From this figure we can more clearly see that the increase in unchanged memory can
have a dramatic and positive influence on the performance of this approach in comparison
to a traditional disk-based rollback/recovery approach.

8. Related Work

Checkpoint optimizations generally fall within one of two strategies; the first hide or
reduce the perceived checkpoint commit latencies without actually reducing the data that
is committed. These strategies include concurrent checkpointing [36, 37], diskless or multi-
level checkpointing [38, 39, 40, 41, 42, 43, 44, 6], remote checkpointing [45, 46, 44] and
checkpointing filesystems [47]. The second set of strategies reduce commit latencies by re-
ducing checkpoint sizes. These strategies include memory exclusion [48] and incremental
checkpointing [2, 49, 50, 51, 52, 1, 53, 3, 54, 55, 4]. In this work we focus on the most closely
related work, incremental checkpointing and multi-level checkpointing using dedicated re-
sources for fault-tolerance resources. See [2] for a more complete study of methods outlined
above.

Incremental checkpointing decreases the overhead of taking a checkpoint by reducing
the amount of application state or data saved to stable storage at each checkpoint. Incre-
mental checkpointing reduces the amount of state saved by only saving that state which
has changed since that last checkpoint has been written. A variety of methods have been
used to determine which state has changed, from compiler based [49] to techniques based
on saving dirty virtual memory pages [52, 51].

Hash-based Incremental Checkpointing, sometimes referred to as probabilistic checkpoint-
ing [55], is a system-based checkpoint method that attempts to minimize the state saved
in a checkpoint and therefore optimize checkpoint commit times. This technique uses com-
putational hash algorithms to determine the portions of a process’ address space that has
changed in a checkpoint interval, rather than the dirtied pages used in standard incremen-
tal checkpointing. Another key feature of this method is the ability to allow finer-grained
detection of dirtied blocks than is currently possible using mechanisms based solely on page
protection mechanisms. This approach has previously been dismissed as being to computa-
tionally expensive [22, 56] to reap the meager benefits in state compression.

With a probabilistic hash-based approach aliasing is a concern. Aliasing, also referred
to as collisions, comes about when modifications to a block are just such that the key values
are identical. The danger with aliasing is the library will not save modified application
data, thereby corrupting the application in the event of a restart. Previous studies have
shown the likelihood of aliasing to be higher in practice then expected theoretically for a
number of hash functions. Specifically, with the hash signature functions CRC32 and XOR, the
probability of collision has been shown to be too high to be considered safe [22]. Secure hash
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signatures like MD5 and SHA256, however, have been shown to behave in practice as expected
theoretically, and are therefore reliable enough to be used in a hash-based approach [56].

Recently, Agarwal et al. [50] investigated the performance characteristics of a hash-based
adaptive incremental checkpointing library. The authors use an MD5 hash to determine the
portions of an application address space that have changed in a checkpoint interval. This
work failed to evaluate the merit of this hash-based technique on actual HPC capability
workloads, instead using micro-benchmarks. In addition, the authors failed to evaluate the
merit of this technique compared to application-specific checkpoint mechanisms that exist
in many capability workloads.

Multi-level checkpointing, such as SCR, [44] are library-based approaches for controlling
checkpointing to multiple storage targets, including memory-based checkpoints, checkpoint-
ing to local storage, and remote checkpoints, into a single system. Because of this, they share
some of the advantages and disadvantages of memory-based checkpointing and local storage
techniques. Unlike these techniques, however, multi-level checkpointing has the flexibility
to choose between multiple levels of storage based on system design parameters, making it
a promising technique for exascale systems.

Hashing and various erasure codes, for example Reed-Solomon encoding, can be used
at various levels in these multi-level schemes. Recently, a low-overhead multi-level check-
pointing technique has been investigated for hybrid systems, such as those with GPUs [6].
This technique is essentially identical to SCR except for a Reed-Solomon encoding being
used rather than XOR, thereby increasing the number of simultaneous failures that can be
tolerated. In contrast to work described in this paper, the authors perform all application
processing on the GPUs and have the CPUs perform only communication for the application
and encoding of checkpoints. As we show in this paper, the GPUs can generally perform
this work much faster than the CPU, even including the time to copy data between the sep-
arate memory space. In addition, not all extreme-scale HPC applications are well suited to
computing only on the GPUs, therefore the costs will be much higher when the application
computation and checkpointing mechanisms must share the CPU. For those applications
which can effectively utilize on-node GPUs, a technique similar to [6] can be used – where
the application runs on the GPU and the hashing mechanism can be run on CPU.

9. Conclusions

In this paper, we use a series of simple models to illustrate the viability of hash-based
incremental checkpointing and its increase in application efficiency. In addition, we use a
previously published library libhashckpt, an incremental checkpointing library that uses
hashing to save only the changed state of an application in a checkpoint interval. To signif-
icantly decrease the overhead of the hash calculation and therefore increase the number of
platforms this technique will be viable, libhashckpt can utilize GPUs. Using this library,
we compare the checkpoint file sizes of this hash-based method with that of a standard page-
protection mechanism and a highly optimized application-specific mechanism. Using real
capability HPC workloads we show that, for a certain class of applications, this hash-based
method can reduce the checkpoint file size to be around 15% of that of a page-based ap-
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proach. In addition, this method can create checkpoint files which are only 35% larger than
that of a manually-coded, application-specific method. We use the model and results from
real applications to outline the viability of this technique for next-generation exascale sys-
tems, comparing against both a traditional and strictly page-based approach. Additionally
we show the viability of this hash-based incremental checkpointing using both the GPU and
CPU to compute the hashes. More specifically, we show that at GPU hashing speeds this
technique has significantly lower overheads and significant increase in application efficiency
in much of the exascale design space than comparative approaches.
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Figure 11: Efficiency increase for LAMMPS, SAGE, and CTH. These figures use a variant of Daly’s equa-
tion [34] and the associated maximum viability bandwidths, amount of memory changed, and a socket
MTBF of 5 years‘[35] for each of the applications. The efficiency difference used in this figure is defined
as the efficiency of the hash-based approach (efficiency defined as the percentage of useful work) minus the
efficiency of strictly traditional checkpoint/restart. The shaded regions corresponds to the possible socket
counts range expected for an exascale class machine [33].
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Figure 12: Efficiency increase for a 100,000 socket application based on the percentage of application mem-
ory that remains unchanged. This figure uses a variant of Daly’s equation [34], the maximum viability
bandwidth from testing with CTH, and a socket MTBF of 5 years [35]. The efficiency difference used in this
figure is defined as the efficiency of the hash-based approach minus the efficiency of the strictly traditional
checkpoint/restart approach. The shaded region of this figure corresponds to the possible socket count range
expected for an exascale class system [33]
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